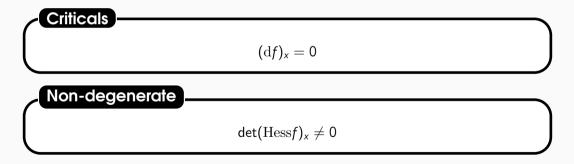
The h-Cobordism Theorem

Fang-Rong Zhan (NC State)

Dec, 2023

Morse functions

All the criticals are non-degenerated.



Morse functions

All the criticals are non-degenerated.

- Facts

Are isolated. The criticals of a Morse function are isolated.

Do exist. Morse functions form an open dense subset of $C^{\infty}(M, \mathbb{R})$ in C^2 -topology.

Morse functions, locally

Around a critical x,

$$f = f(x) - (x^{1})^{2} - (x^{2})^{2} - \dots - (x^{\lambda})^{2} + (x^{\lambda+1})^{2} + \dots + (x^{n})^{2}$$

for some chart (x^1, \cdots, x^n) originated at x.

Morse functions, locally

Around a critical x,

$$f = f(x) - (x^{1})^{2} - (x^{2})^{2} - \dots - (x^{\lambda})^{2} + (x^{\lambda+1})^{2} + \dots + (x^{n})^{2}$$

for some chart (x^1, \dots, x^n) originated at x.

Fact One can readoff a cellular structure of the space from indexes of the criticals, namely, ${\text{criticals of a Morse function}} \stackrel{1:1}{\leftrightarrow} {\text{cells of a CW structure}}$

an $\lambda\operatorname{\!-ind}\,\operatorname{critical}\mapsto \operatorname{a}\,\lambda\operatorname{\!-dim}\,\operatorname{cell}$

Gradient-like vector field X

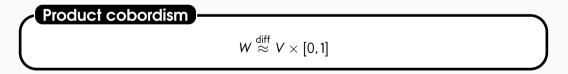
- $X \cdot f > 0$ away from criticals;
- X = ∇f around every critical, where the gradient is induced from the Morse chart. (We have not introduced a metric on the manifold yet.)

Altering X gives a new Morse function.

Cobordism

A (n + 1)-dim cobordism is a 5-tuple $(W^{n+1}; V, V'; h, h')$ of smooth oriented compact manifolds W, V, V' and orientation-preserving diffeomorphisms h, h' such that $\partial W \stackrel{\text{diff}}{\approx} V \sqcup -V'$, where the h- and h'-image is understood, also denoted as

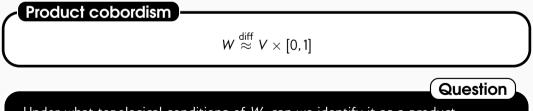
 $V \xrightarrow{W} V'$.



Cobordism

A (n + 1)-dim cobordism is a 5-tuple $(W^{n+1}; V, V'; h, h')$ of smooth oriented compact manifolds W, V, V' and orientation-preserving diffeomorphisms h, h' such that $\partial W \stackrel{\text{diff}}{\approx} V \sqcup -V'$, where the h- and h'-image is understood, also denoted as

 $V \xrightarrow{W} V'$.



Under what topological conditions of *W*, can we identify it as a product cobordism?

Fact

Relative Morse function does exist.

 $V \xrightarrow{W} V'$ admits a Morse function f, with f(0) = V, f(1) = V'.

Gradient-like vf does exist.

With respect to *f*, there admits a gradient-like vector field.

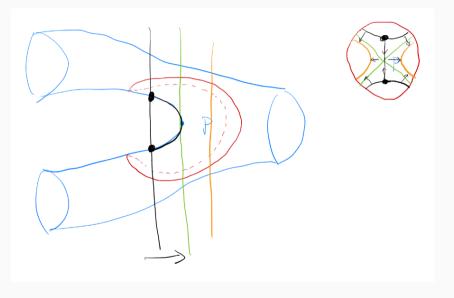
Important observation

If there are no criticals of *f*, then it **is** a product cobordism.

Question updated

Under what topological conditions of W, can we eliminate all the criticals?

Anatomy of criticals



Anatomy of criticals

Let $g : OD^n \stackrel{\text{diff}}{\approx} U$ open around p. Let V_0, V_1 be level sets near p with $f(V_0) < f(p) < f(V_1)$.

characteristic embedding

$$\varphi_L: S^{\lambda-1} \times OD^{n-\lambda} \to V_0: (u, \theta v) \mapsto g(u \cosh \theta, v \sinh \theta)$$

$$arphi_{\mathsf{R}}:\mathit{OD}^{\lambda-1} imes \mathit{S}^{n-\lambda}
ightarrow \mathit{V}_{\mathsf{l}}:(heta \mathit{u}, \mathit{v})\mapsto \mathit{g}(\mathit{v}\sinh heta, \mathit{u}\cosh heta)$$

left-hand sphere S_L / right-hand sphere S_R

 $arphi_L(S^{\lambda-1} imes 0)$, $arphi_R(0 imes S^{n-\lambda-1})$.

left-hand disk D_L right-hand disk D_R

The union of integral curves of X ending at p (resp. starting at p).

Surgery of type $(\lambda, n - \lambda)$

We can use surgery to describe the change of characteristic embedding from the left-hand to the right-hand.

$$\chi(V,\varphi) = (V - \varphi(S^{\lambda-1} \times 0)) \sqcup (OD^{\lambda} \times S^{n-\lambda-1}) / \varphi(u,\theta v) \sim (\theta u, v)$$

And use cobordism to trace this surgery.

Theorem

There exists an elementary cobordism (i.e. Morse # = 1) W such that

$$\checkmark \xrightarrow{\mathsf{W}} \chi(\mathsf{V}, \varphi).$$

Lesson A critical is essentially a cobordism. Can we split them?

Rearrangment of criticals

For criticals p, p' indexd $\lambda \ge \lambda'$ with f(p) < f(p'), there is enough room to alter X to move $S_R(p)$ out of the way of $S_L(p')$ at any level set V_c between f(p) and f(p'), since dim $S_R(p)$ + dim $S_L(p') = (n - \lambda - 1) + (\lambda' - 1) < n - 1 = \dim V_c$.

Theorem

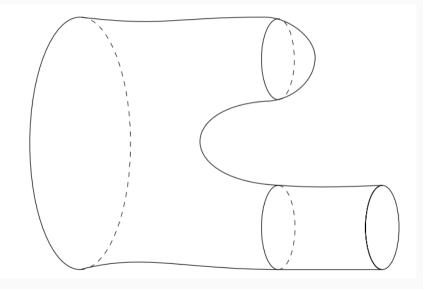
There exists a Morse function on the cobordism $V \xrightarrow{W} V'$ such that

- $f(V) = -\frac{1}{2}, f(V') = n + \frac{1}{2}$
- f(p) = index(p), $\forall critical p$

These functions are called **self-indexing**, and we can split it as compositions of cobordisms $c_0 \circ \cdots \circ c_{\lambda} \circ \cdots \circ c_n$, with only λ -index's in c_{λ} .

Suppose in the following that all Morse functions are self-indexing.

Cancellation of criticals



Cancellation of criticals

Always alter X to make the intersection transverse. We can cancel a pair (p, p') of criticals of index λ , $\lambda + 1$, provided that ...

Single-point intersection

If S_R is transversely interesected with S'_L with a single point, then the cobordism is a product cobordism.

Some hard differential topology works are required.

Cancellation of criticals

Always alter X to make the intersection transverse. We can cancel a pair (p, p') of criticals of index λ , $\lambda + 1$, provided that .,,

Whitney's trick, locally

Requires $\pi_1 M = 0$, $\pi_1 V_{a-1}(\mathbb{R}^{a+b-2}) = 0$ ($\iff \dim M = a + b - 2 \ge 6$).

Eliminating middle index criticals

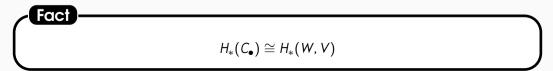
Let $W_{\lambda} = c_0 \circ \cdots \circ c_{\lambda}$, $V = W_{-1} \subset W_0 \subset \cdots \subset W_n$. We can interpret the homology generators as the left-hand disks, namely,

$$H_{\lambda}(W, V) \cong \bigoplus_{\text{left-band dicks}} \mathbb{Z} \langle D_{L}^{\lambda} \rangle \cong H_{\lambda}(W_{\lambda}, W_{\lambda-1}),$$

Let $C_{\lambda} := H_{\lambda}(W_{\lambda}, W_{\lambda-1})$ and

$$\partial_{\lambda}: C_{\lambda} \to C_{\lambda-1}: [D_L] \mapsto \sum S'_R \cdot S_L[D_L^{\lambda-1}]$$

is given by the induced differential of long exact sequence of the triad $(W_{\lambda}, W_{\lambda-1}, W_{\lambda-2})$.



Eliminating middle index criticals

$$H_{\lambda}(W, V) \cong \bigoplus_{\text{left-hand disks}} \mathbb{Z} \langle D_{L}^{\lambda} \rangle \cong H_{\lambda}(W_{\lambda}, W_{\lambda-1}),$$

- If W is a product cobordism, then $H_*(W, V) = 0$.
- Conversely, if $H_*(W, V) = 0$, then $H_*(C_{\bullet}) = 0$ and therefore C_{\bullet} is exact, which means every critical is pairing up with another adjacently indexed critical.

Lesson

The criticals' data is essentially the homology data.

Question twice updated

Can $H_*(W, V) = 0$, $\pi_1 W = 0$, dim $W \ge 6$ imply that W is a product cobordism?

Facts that the elimination works generally

- All 0-indexed criticals can be canceled with equal number of 1-indexed's.
- All 1-index's can be traded for equal number of 3-index's, provided $\pi_1 V = 0$.
- Replace f by -f to eliminate 0-coindex's and 1-coindex's.

Yes! from *h*-cobordism theorem

- For $V \xrightarrow{W} V'$, if
 - 1) $\pi_1 W = \pi_1 V = 0;$
 - 2) h-cobordism;

3) dim $W \ge 6$; then $W \stackrel{\text{diff}}{\approx} V \times [0, 1]$.

h-cobordism

V, V' are deformation retract of W.

Remark

Under condition 1),

$$h$$
-cob $\iff H_*(W, V) = 0$

Application

Characteristic of $D^{\geq 6}$

 $\pi_{1}W = \pi_{1}\partial W = 0, W \text{ compact. TFAE:}$ 1) $W \stackrel{\text{diff}}{\approx} D$ 2) $W \stackrel{\text{homeo}}{\approx} D$ 3) W retractable4) $H_{*}W \cong H_{*}pt$

1) \implies 2) \implies 3) \implies 4) is obvious. For 4) \implies 1): Let $D \hookrightarrow W$ be an embedding of a disk, Since

$$H_*(W - intD, \partial D) \cong H_*(W, D) = 0,$$

by the *h*-cobordism theorem, $\varnothing \xrightarrow{W-intD} \partial D$ is a product cobordism. Combing with $\partial D \xrightarrow{D} \varnothing$, we have $W \stackrel{\text{diff}}{\approx} D$.

Application

Generalized Poincaré Conjecture

If
$$\pi_1 V^n = 0$$
, $H_* V \cong H_* S^n$, $n \ge 5$, then $V \stackrel{\text{homeo}}{\approx} S^n$.

Let $D^n \hookrightarrow V$ be an embedding of a *n*-disk.

$$H_*(V - intD, \emptyset) \cong H^{n-*}(V - intD, \partial D) \cong H^{n-*}(V, D) \cong \begin{cases} \mathbb{Z}, & * = 0 \\ 0, & * \neq 0 \end{cases} \cong H_* pt$$

By the characteristic of $D^{\geq 6}$, we have $V - intD \stackrel{\text{diff}}{\approx} D_0^n$, that is $V^n \stackrel{\text{diff}}{\approx} D^n \cup_h D_0^n$, a so-called "twisted sphere", where $h : \partial D \to \partial D_0$ is the attaching map. Let $g_0 : D_0 \hookrightarrow S^n$ be a embedding, then $g(u) = \begin{cases} g_0(u), & u \in D_0 \\ \sin \frac{\pi t}{2}g_0(h^{-1}u) + \cos \frac{\pi t}{2}e_{n+1}, & u \in D \end{cases}$ is a homeomorphism.

Thank you for your attention!

Questions?