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CHAPTER 7

Seiberg-Witten Floer 稳定同伦型

从无限维泛函定义的 Floer 同调能否用某个拓扑空间（CW 复形，或者是 CW
复形的谱，稳定同伦型）的同调来再现，这样的问题提出在 Floer Memorial Volomn
[?] 中收录的 Cohen-Jones-Segal 论文中（这个问题最开始 Floer 自己似乎也有所考
虑）。Manolescu [?] 让这个问题在 Seiberg-Witten 理论方面有所进展。Manolescu
在 b1(Y ) = 0 时从 Seiberg-Witten 方程定义了被称为 Seiberg-Witten Floer 稳定同
伦型的 S1 稳定同伦型。取其 S1 等变同调就再现 Seiberg-Witten Floer同调。此外，
用 Seiberg-Witten Floer 同伦型可以在带边界四维流形上定义 Bauer—古田不变量。

1. 稳定同伦范畴

为了定义 Seiberg-Witten Floer 同伦型，我们来定义必要的稳定同伦范畴。

定义 7.1. 令 C 为如下定义的范畴：

• C 的对象是三元组 (W,m, n). 其中，W 是带基点的 S1-CW 复形，m ∈
Z, n ∈ Q。

• 对于 C 的对象 (W0,m0, n0), (W1,m1, n1)，将态射的集合在 n0 − n1 ∈ Z 时
定义为

MorC((W0,m0, n0), (W1,m1, n1))

= lim
p,q→∞

[ΣRp⊕Cq

W0,Σ
Rp+m1−m0⊕Cq+n1−n0W1]S1 ,

n0 − n1 6∈ Z 时则定义

MorC((W0,m0, n0), (W1,m1, n1)) = ∅.

这里 [·, ·]S1 是保基点 S1 映射的同伦类的集合，ΣR.ΣC 表示关于 R,C 的约
化纬悬。
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4 7. SEIBERG-WITTEN FLOER 稳定同伦型

对正整数 p, q 定义

ΣRp⊕Cq

(W,m, n) = (ΣRp⊕Cq

W,m, n).

引理 7.2. 对正整数 r，有典范同构

ΣRr

(W,m, n) ∼= (W,m− r, n),ΣCr

(W,m, n) ∼= (W,m, n− r).

证明. 由定义

MorC(ΣRr

(W,m, n), (W,m− r, n))

=MorC((ΣRr

W,m, n), (W,m− r, n))

= lim
p,q→∞

[ΣRp⊕Cq

W,ΣRp⊕Cq

W ]S1 .

是故以 ΣRp⊕Cq
W 的恒等映射为代表元的态射给出了 ΣRp

(W,m, n) 与 (W,m− r, n)

之间的同构。
同理可得第二个同构。 □

基于这个引理，对于 r ∈ Z, q ∈ Q 我们定义（作为 “纬悬的逆”）

Σ−Rr

(W,m, n) := (W,m+ r, n),Σ−Cr

(W,m, n) := (W,m, n+ q).

更进一步，对有限维实线性空间 V 我们定义

Σ−V (W,m, n) := (ΣVW,m+ 2 dimR V, n).

对有限维复线性空间 V 我们定义

Σ−V (W,m, n) := (W,m, n+ dimC V ).

引理 7.3. V 是有限维实或复线性空间时，在 C 中有典范同构

Σ−VΣV (W,m, n) ∼= (W,m, n) ∼= ΣVΣ−V (W,m, n).

证明. 令 V 是实线性空间，取线性同构 f : V
∼=−→ Rr. 因为 π0(GL(r,R)) = Z2，

f 的取法除去同伦后有 2 种。但是同构 f ⊕ f : V ⊕ V
∼=−→ R2r 的同伦类不依赖于 f

的取法。
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由定义有

MorC(Σ−VΣV (W,m, n), (W,m, n))

=MorC((ΣV⊕VW,m+ 2r, n), (W,m, n))

=MorC((ΣR2r

W,m+ 2r, n), (W,m, n)) （使用同构 f ⊕ f）

= lim
p,q→∞

[ΣRp+2r⊕Cq

W,ΣRp+2r⊕Cq

W ]S1 .

以 ΣRp+2r⊕Cq
W 的恒等映射为代表的态射给出了 Σ−VΣV (W,m, n) 与 (W,m, n) 的

同构。同理还可得 ΣVΣ−V (W,m, n) 与 (W,m, n) 之间的同构。
接下来令 V 是复线性空间。因为有 π0(GL(r,C)) = 0，同构 f : V

∼=−→ C 的取
法除掉同伦后是唯一确定的。与前述同理可得所求同构。 □

对于 m ∈ Z, n ∈ Q，将 (S0,m, n) 写为 (R−m ⊕ C−n)+。
t 为 spin 结构时，可以定义 Pin(2) 等变 Seiberg-Witten Floer 稳定同伦型。应

用上考虑 Pin(2) 等变更加重要。为了定义 Pin(2) 等变 Seiberg-Witten Floer 稳定
同伦型，我们现在来定义 Pin(2) 等变稳定同伦范畴。令 G = Pin(2) 。

定义 7.4. 令 CG 为如下定义的范畴。

• CG 的对象是三元组 (W,m, n)。这里 W 是带基点 G-CW复形，m ∈ Z, n ∈
Q.

• 对于 CG 的对象 (W0,m0, n0), (W1,m1, n1)，将态射的集合在 n0 − n1 ∈ Z
时定义为

MorCG
((W0,m0, n0), (W1,m1, n1))

= lim
p,q→∞

[ΣR̃p⊕Hq

W0,Σ
R̃p+n0−n1⊕Hq+m0−m1W1]G,

在 n0 − n1 6∈ Z 时定义

MorCG
((W0,m0, n0), (W1,m1, n1)) = ∅.

R̃ 是实一维的非平凡 G 表示。

同上我们做接下来的定义。令 V 是 G 的表示空间，且有 V ∼= R̄r ⊕Hs。此时
我们做

Σ−V (W,m, n) := (ΣV S1

W,m+ 2r, n+ s) ∈ ObCG.
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V S1 是 S1 不动点形成的子空间。此外，对 q ∈ Q，令

Σ−qH(W,m, n) := (W,m, n+ q) ∈ ObCG.

我们还将 (S0,m, n) 写为 (R̃−m ⊕H−n)+.

2. Seiberg-Witten Floer 稳定同伦型的结构

我们来说明 Seiberg-Witten Floer 稳定同伦型的结构。将 Y × R 上的 Seiberg-
Witten 方程（6.3）[?]（形式上地）与无穷维上的流线等同。我们将这个流线进行
有限维近似，运用在第三章说明的 Conley理论定义 Floer同伦型。b1(Y ) = 0情况，
结构可以依据于 Manolescu [?] 而定。b1(Y ) > 0 的情况有本质性的困难，结构变得
更难。这个情况下，结构可以根据 Kroheimer-Manolescu [?]，Khandhawit—林—笹
平 [?]，笹平—Stoffregen[?] 决定。本书只说明 b1(Y ) = 0 的情况。

令 Y 是有向闭三维流形。令 g, t 是 Y 的 Riemann 度规和 spinc 结构。更进
一步在这里假定 b1(Y ) = 0。取 Y 上的平坦 spinc 联络 A0（除去规范变换后，A0

的选法是唯一的）。令 S 为旋量丛。陈—Simons—Dirac 泛函 CSD 可以定义为
C(Y, t) = iΩ1(Y )⊕ Γ(S) 上的泛函（参照 6.2 节）。与定义 Bauer—古田不变量时在
(5.7) 取 Coulomb 规范同理，这里也取 Coulomb 规范

V = ker(d∗ : iΩ1(Y ) → iΩ0(Y ))⊕ Γ(S).

（非线性）Coulomb 投影
ΠC : C(Y, t) → V

定义为

ΠC(a, φ) = (eξ(A))∗(a, φ) = (a− dξ(a), eξ(a)φ).

这里 ξ(a) : Y → iR 是以下方程的唯一解：

∆ξ(a) = d∗a,

∫
Y

ξ(a)dµ = 0.

唯一性可以通过考虑 Hodge 分解得到。这个在定义 Seiberg-Witten Floer 稳定同伦
型用到的方程，对 γ = (a, φ) : R → V 是以下的方程：

∂γ

∂t
(t) = −ΠC∗ gradCSD(γ(t)).
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这里，ΠC∗ 是关于 γ(t) 的 ΠC 的微分。直接计算可将上面的方程写为下面的样子

∂a

∂t
(t) = − ∗ (da(t) + q(φ(t))) + dξ(q(φ)).

∂φ

∂t
(t) = − /DA0

φ(t)− ρ(a(t))φ(t)− ξ(q(φ(t)))φ(t).

这里，如果我们有

l(a, φ) = (∗da,DA0φ)

c(a, φ) = (q(φ(t))− dξ(q(φ(t))), ρ(a)φ+ ξ(q(φ))φ)

那么方程可以写为

γ : R → V

∂γ

∂t
(t) = −(l + c)(γ(t)).

这个方程可以看成关于 V 上适当度规的 CSD的梯度流的方程（这个事实本书并不
使用，详细情况见论文 [?]）。

直接的计算可以证明以下。

引理 7.5. 对于 (6.3) 的解 γ̌，如果我们有 γ(t) := ΠC γ̃(t)，那 γ 就成为 (7.2)
的解。相反令 γ̃ 是 (7.2) 的解。如果有 γ̌(t) := (e

∫ t
0 ξ(q(ϕ)))∗(γ(t))，那 γ̌ 就成为 (6.3)

的解。这里 (e
∫ t
0 ξ(q(ϕ)))∗ 表示基于 e

∫ t
0 ξ(q(ϕ)) 的 Y 上的规范变换。甚者，有

CSD(γ(t)) = CSD(γ̌(t)).

更进一步，关于 ΠC，有以下引理成立。

引理 7.6. 令 f : Y → iR是光滑函数。对 (a, φ) ∈ C(Y, t)，令 ΠC(a, φ) = (a′, φ′)。
这时有

ΠC((e
f )∗(a, φ)) = (a′, e−

1
Vol(Y,g)

∫
V fdµφ′).

这里 Vol(Y, g) 是与 g 有关的 Y 的体积。特别地，对 k ≥ 0，∥∥ΠC((e
f )∗(a, φ))

∥∥
L2
k(Y )

= ‖ΠC(a, φ)‖L2
k(Y ) .

证明. TBA □

Y × R 上的 Seiberg-Witten 方程具有以下的紧致性。
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定理 7.7. 令 k 是任意非负实数。假定 b1(Y ) = 0。存在常数 R0 > 0 使得下述
命题成立：令 γ̌ : R → C(Y, t) 是 Seiberg-Witten 方程 (6.3) 的解，且 CSD(γ̌(t)) 有
界。此时，对任意 s ∈ R，存在光滑函数 f : Y × [s− 1, s+ 1] → R, 使得∥∥(ef )∗γ̌∥∥

L2
k(Y×[s−1,s+1])

≤ R0.

这里 (ef )∗ 表示四维上的规范变换。

这个定理来自 Kroheimer-Mrowka [?] 书中的 Theorem 5.1.1, Lemma 16.3.2,
Lemma 16.4.4.

依据引理 7.5、引理 7.6、定理 7.7 得到下面推论。

推论 7.8. 假定 b1(Y ) = 0. 令 k ≥ 0。存在某个常数 R0 > 0 使得下述成立。令
γ : R → V 是方程 (7.2) 的解，且 CSD(γ(t)) 有界。此时，对所有 t ∈ R，成立

‖γ(t)‖L2
k(Y ) ≤ R0.

甚者，还成立

‖γ‖L2
k(Y×[s−1,s+1]) ≤ R0.

将方程 (7.2) 的有限维近似如下选取。l 是 V 上的自伴算子，V 可分解为 l 的
特征空间

V =
⊕
λ

Vλ.

λ 取遍 l 的特征值。进一步，特征值全部为实数。
λ, µ ∈ R，对 λ < µ 令 V µ

λ 为特征值属于区间 (λ, µ] 的特征向量张成的子空间。
根据椭圆型微分算子的一般理论，V µ

λ 是有限维的（参考 Lawson-Michelsohn 书 [?]
中的 Chapter III, Theorem 5.8）。令 pµλ : V → V µ

λ 是 L2-投影。取正实数 R 使得
R > R0。R0 是推论 7.8 中的实数。令 B(V,R) := {y ∈ V | ‖y‖L2

k(Y ) ≤ R}，并取满
足以下条件的光滑函数 χ : V → [0, 1]：

χ ≡ 1,在 B(V,R) 上

supp(χ) ⊂ B(V, 2R)
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作为方程 (7.2) 的有限维近似，考虑如下方程，

γ : R → V µ
λ

∂γ

∂t
(t) = −χ(γ(t))(l + pµλc)(γ(t)).

从方程 (7.3) 得到流线

ϕµ
λ : V µ

λ × R → V µ
λ .

为了适用 Conley 理论我们证明如下。

定理 7.9. 假定 b1(Y ) = 0。对于 λ � 0, µ � 0，B(V µ
λ , R) 是关于流线 ϕµ

λ 的孤
立邻域。

这个定理的证明要用到如下命题。

命题 7.10. 令 a, b ∈ R。a < b。令函数列 γn : [a, b] → L2
k(iΩ

1(Y ) ⊕ Γ(S)) 关
于 L2

k(Y ) 范数一致有界，并且令之关于 L2(Y ) 范数等度连续。此时，存在某个
γ : [a, b] → L2

k(iΩ
1(Y )⊕ Γ(S)) 使得取适当的子列后，γn 以 L2

k−1(Y ) 范数一致收敛
到 γ。

证明. TBA □

定理 7.9 的证明. TBA □

命题 7.11. 令 λ′ < λ � 0, µ′ > µ � 0。令 (N,L) 是 Inv(B(V µ
λ , R)) 的 S1 等

变指数对，(N ′, L′) 是 Inv(B(V µ′

λ′ , R)) 的 S1 等变指数对。此时有 S1 同伦等价

N ′/L′ ∼ (N/L) ∧ (V λ
λ′)+.

证明. TBA □

由定理 7.9，对 λ, µ ∈ R, λ � 0, µ � 0，可以考察 Inv(B(V µ
λ , R), ϕµ

λ)的 Conley
指数。Seiberg-Witten Floer 稳定同伦型虽然基本上可以作为 Conley 指数来定义，
但是为了可以不依赖于 Y 的 Riemann 度规而定义，有必要按以下样子定义有理数
n(Y, t, g)。令 (X, s) 为紧致光滑四维 spinc 流形，且有边界 (Y, t)（我们知道这样的



10 7. SEIBERG-WITTEN FLOER 稳定同伦型

(X, s) 总是存在的）。此时，令 ĝ 是 X 的 Riemann 度规，限制到 Y 上是 g ，Â0 是
X 上的 spinc 联络，限制到 Y 上是 A0。我们让

n(Y, t, g) := ind( /̂DÂ0
⊕ p0r)− c1(s)

2 − σ(X)

8
∈ Q.

这里，σ(X)是 X 的相交形式的符号差， /̂DÂ0
: Γ(S+) → Γ(S−)是 X 上的 Dirac算

子，r : Γ(S+) → Γ(S−) 是到 X 的边界 Y 的限制。

/̂DÂ0
⊕ p0r : L2

1(Γ(S
+)) → L2(Γ(S−))⊕ L2

1
2
(Γ(S)0)

于是成为 Fredholm 算子，ind( /D)Â0
⊕ p0r ∈ Z 是其指数。这里，L2

1
2

(S)0 是 /DA0
的

特征值小于 0 的特征向量张成的 L2
1
2

(S) 的子空间。

引理 7.12. 有理数 n(Y, t, g) 不依赖于 (X, s), ĝ, Â0 的取法，只依赖于 (Y, t, g)。

证明. TBA □

定义 7.13. 令 (Y, t)是三维闭 spinc 流形。假定 b1(Y ) = 0。Seiberg-Witten Floer
稳定同伦型定义为

SWF (Y, t) := Σ−(V 0
λ⊕Cn(Y,t,g))(N/L) ∈ ObC.

在这里要求，λ � 0, µ � 0, (N,L) 是孤立不动点集 Inv(B(V µ
λ , R), ϕµ

λ) 的 S1 等变
指数对。

定理 7.14. SWF (Y, t) 除去 C 中的典范同构后，不依赖 g, λ, µ, (N,L) 的取法，
是 (Y, t) 的不变量。

这个的定理的证明将在 7.4 节进行。不依赖于 λ, µ 由命题 7.11 可知。
正如在 5.8节见到的 spin四维流形上的 Seiberg-Witten方程是 Pin(2)等变的，

并且在应用上是重要的。写 G := Pin(2)。三维的情况同理有 Seiberg-Witten 方程
是 G 等变的。令 t 是 Y 的 spin 结构，A0 是 spin 联络。Y 上的旋量丛 S 是四元数
向量丛。对 V µ

λ 与 (5.11) 同理可以定义 G 作用。此时，流线 ϕµ
λ 成为 G 等变。G

等变 Conley 理论运用到 ϕµ
λ，我们定义 G 等变 Seiberg-Witten Floer 稳定同伦型。
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定义 7.15. 令 (Y, t) 是三维闭 spin 流形。假定 b1(Y ) = 0。此时，G 等变
Seiberg-Witten Floer 稳定同伦型定义为

SWF (Y, t) := Σ−(V 0
λ⊕H

1
2n(Y,t,g))(N/L) ∈ CG.

这里，有 λ � 0, µ � 0，且有 (N,L) 是 Inv(B(V µ
λ , R), ϕµ

λ) 的 G 等变指数对。

定理 7.16. G 等变 Seiberg-Witten Floer 稳定同伦型 SWF (Y, t) 除去 CG 上的
典范同构后，不依赖于 g, λ, µ, (N,L) 的取法，是 (Y, t) 的不变量。

根据 Lidman-Manolescu[?]，能够证明取 Seiberg-Witten Floer稳定同伦型的同
调可以再现 Seiberg-Witten Floer 同调（6.2 节）。这意味着，Seiberg-Witten Floer
稳定同伦型是 Seiberg-Witten Floer 同调的精细化。

定理 7.17 (Lidman-Manolescu[?]). 有以下同构：

H̃S1

∗ (SWF (Y, t);Z) ∼= ~HM∗(Y, t),

cH̃∗(SWF (Y, t);Z) ∼= zHM∗(Y, t),

tH̃∗(SWF (Y, t);Z) ∼= HM∗(Y, t).

令 −Y 是 Y 的逆定向流形。此时，Y 的陈—Simons—Dirac 泛函 CSDY 和
−Y 的陈—Simons—Dirac 泛函 CSD−Y 满足以下等式：

CSDY = −CSD−Y .

由此，从 Y,−Y 上 Seiberg-Witten 方程定义的流线，有以下成立：

ϕ−λ
−µ,−Y = ϕµ

λ,Y .

这里，−ϕµ
λ,Y 是 ϕµ

λ,Y 的反向流线：

−ϕµ
λ,Y (g, t) = ϕµ

λ,Y (g,−t).

由此，与定理 3.25 同理有以下成立。另外，见论文 [?] 的 4.4 节。

定理 7.18. SWF (Y, t) 与 SWF (−Y, t) 是 Spanier–Whitehead 对偶。也就是说
有 C 中的态射

δ : SWF (Y, t) ∧ SWF (−Y, t) → S0
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与

η : S0 → SWF (Y, t) ∧ SWF (−Y, t),

满足与定义 3.23 中一样的条件。

3. 带边界四维流形的相对 Bauer—古田不变量

令 X 是联通、紧致的有向带边界四维流形。令 ∂X = Y =
∐b0(Y )

i=1 Yi。Yi 是 Y

的联通分支。并且，假定 b1(Y ) = 0。取 X 的 spinc 结构 s。使用 Seiberg-Witten
Floer 稳定同伦型的话，在 5.4 节定义的 Bauer—古田不变量可以对带边界流形 X

定义。我们将之称为相对 Bauer—古田不变量。b1(X) = 0 的情况下，相对 Bauer
—古田不变量可以定义为 7.1 节定义的范畴 C 中的态射

ΦX(s) :

(
C

c1(s)
2−σ(X)
8

)+

→ ΣRb+(X)

SWF (Y, t).

b1(Y ) = 0 时，这个结构依于 Manolescu[?] 而定。b1(Y ) > 0 时，依 Khandhawit—
林—笹平 [?]、笹平—Stoffregen[?] 而定。

取 X 的 spinc 结构 s、Riemann度规 ĝ、spinc 联络 Â0。令 Â0 向 Y 的限制是平
坦联络 A0。为了定义相对 Bauer—古田不变量，有必要为 X 上的 Seiberg-Witten
方程加上适当的边界条件。这个条件被称为双 Coulomb 条件，由 Khandhawit[?]
引入。

对 X 上的微分 1 形式 α̂ ∈ iΩ1(X)，将以下的条件称为双 Coulomb 条件：
d̂∗α̂ = 0,

d∗(α̂|Y ) = 0,∫
Yi
(ινα̂)dµ = 0(i = 1, · · · , b0(Y )).

这里，d̂ 是 X 上的外微分，d̂∗ 是其伴随算子，ν 是 Y 上向外的法向量，ιν 是根据
ν 的缩并。满足双 Coulomb 条件的微分 1 形式的空间写为 Ω1

CC(X)。

命题 7.19. 有如下的（并非 L2(X) 正交的）直和分解：

Ω1(X) = Ω1
CC(X)⊕ dΩ0(X).
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证明见 Khandhawit 的论文 [?]。
利用 X 上的 Â0，将所有 spinc 联络的空间视同 iΩ1(X)。令 Â0 向边界 Y 的

限制为平坦联络。由这个命题，对 (â, φ̂) ∈ iΩ1(X)⊕ Γ(S+)，则只存在一个规范变
换 ef , f : X → iR，成立

(ef )∗(â, φ̂) = (â− df, ef φ̂) ∈ iΩ1
CC(X)⊕ Γ(S+)∫

X

fdµ = 0

以后，为了记号简便，假定 b1(X) = 0。为了定义 Bauer—古田不变量，Seiberg-
Witten 方程的紧致性是重要的。

定理 7.20. 假定 b1(X) = 0, b1(Y ) = 0。令 k ≥ 4。则存在常数 R1 > 0 使得以
下成立。令 x = (â, φ̂) ∈ iΩ1

CC(X)⊕Γ(S+) 是 X 上 Seiberg-Witten 方程的解，并且
令

γ : [0,∞) → V

是方程 (7.2) 的解。令 CSD(γ(t)) 作为 [0,∞) 上的函数有界，且满足

r(x) = γ(0).

此时，
‖x‖L2

k(X) ≤ R1, ‖γ(t)‖L2

k− 1
2

(Y ) ≤ R1(∀t ∈ [0,∞)).

这个定理的证明见 Khandhawit 的论文 [?] 的 4.1 节。
取 µ > 0。将 Seiberg-Witten 映射

SW µ : L2
k(iΩ

1
CC(X)⊕ Γ(S+)) → L2

k−1(iΩ
+(X)⊕ Γ(S−))⊕ L2

k− 1
2
(V µ)

定义为

SW µ(â, φ̂) = (sw(â, φ̂), pµr(â, φ̂))

= (F+

(Â0+â)det + q(φ̂), /DÂ0+âφ̂, p
µr(â, φ̂))

= (2d̂+â+ F+

Âdet
0

+ q(φ̂), /DÂ0
φ̂+ ρ(â), pµr(â, φ̂)).

如果有
D(â, φ̂) = (2d̂+â, /̂DÂ0

φ̂), C(â, φ̂) = (F+

Âdet
0

+ q(φ̂), ρ(â)φ̂),
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那么可以写

SW µ(â, φ̂) = (D(â, φ̂) + C(â, φ̂), pµr(â, φ̂)).

将这个映射进行有限维近似得到的就是相对 Bauer—古田不变量 ΦX(s)。为了定义
ΦX(s) 我们叙述命题和定义，

命题 7.21 (Atiyah-Patodi-Singer[?]). 算子

D ⊕ pµr : L2
k(iΩ

1
CC(X)⊕ Γ(S+)) → L2

k−1(iΩ
+(X)⊕ Γ(S−))⊕ L2

k− 1
2
(V µ)

是 Fredholm 的.

取 L2
k−1(iΩ

+(X)⊕Γ(S−))的充分大有限维子空间 F 与 λ � 0后，Im(D⊕pµr)

与 V µ
λ 横截相交。取 F 作为 L2

k−1(iΩ
+(X)) 的实子线性空间 FR 与 L2

k−1(Γ(S
−)) 的

复子线性空间 FC 的直和

F = FR ⊕ FC.

此时有

E = ER ⊕ EC = (D ⊕ pµr)−1(F ⊕ V µ
λ ).

E 是有限维，于是

dimR ER − dimR(FR ⊕ V µ
λ,R) = indR(d

+ ⊕ p0r)− dimR(V
µ
0,R) = b+(X)− dimR V

µ
0,C,

indC EC − dimC(FC ⊕ V µ
λ,C) = indC( /̂DÂ0

⊕ p0r)− dimC V
µ
0,C.

将 SW µ 的有限维近似映射

SW µ
F,λ : E → F ⊕ V µ

λ

定义为

SW µ
F,λ(x) = (pF sw(x), p

µr(x)) = (D(x) + pFC(x), pµr(x)).
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取正数 R,R′ > max{R0, R1}, R � R′, ε > 0。这里 R0, R1 是推论 7.9、定理 7.20 中
的常数。令

B(V µ
λ , R) = {y ∈ V µ

λ | ‖y‖L2

k− 1
2

(Y ) ≤ R}

B(E,R′) = {x ∈ E| ‖x‖L2
k(X) ≤ R′}

S(E,R′) = ∂B(E,R′)

B(F, ε) = {x ∈ F | ‖x‖L2
k−1(X) ≤ ε}

S(F, ε) = ∂B(F, ε).

因为 r : L2
k(X) → L2

k− 1
2

(Y ) 有界，可以令

pµr(B(E,R′)) ⊂ B(V µ
λ , R).

另外写

K1 = K1(F, λ, µ, ε) = {y ∈ B(V µ
λ , R)|∃x ∈ B(E,R′), y = pµr(x), ‖pF sw(x)‖L2

k−1(X) ≤ ε},

K2 = K2(F, λ, µ, ε) = {y ∈ B(V µ
λ , R)|∃x ∈ S(E,R′), y = pµr(x), ‖pF sw(x)‖L2

k−1(X) ≤ ε}.

命题 7.22. ε 充分小，F 充分大，λ � 0, µ � 0 时，存在 Inv(B(V µ
λ , R), ϕµ

λ) 的
S1 等变指数对 (N,L) 使得

K1 ⊂ N,K2 ⊂ L.

将 E,F 的一点紧化 E+, F+ 视为

E+ = B(E,R′)/S(E,R′), F+ = B(F, ε)/S(F, ε).

利用命题 7.22 的指数对 (N,L)，可以定义下面的 S1 映射：

f = fF,λ,µ,N,L : E+ → F+ ∧ (N/L)

f(x) =

(pF sw(x), p
µr(x)) ‖pF sw(x)‖L2

k−1(X) < ε时

∗ 其他时候

为了证明命题 7.22，我们证明接下来的引理。
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引理 7.23. 令 l 是 (7.1) 的算子。对 t ≥ 0 考虑 V 上的算子

etl = 1 + tl +
1

2!
t2l2 +

1

3!
t3l3 + · · · .

(1) 对 y ∈ L2
k− 1

2

(V 0)，有

∥∥elty∥∥
L2

k− 1
2

(Y )
≤ ‖y‖L2

k− 1
2

(Y ) .

(2) 对 ε > 0，存在正常数 B = B0，使得对 y ∈ L2(V 0), t ∈ [ε,∞) 有

∥∥etly∥∥
L2

k− 1
2

(Y )
≤ B ‖y‖L2(Y ) .

证明. TBA □

写 A = B(V µ
λ , R), A+ = {y ∈ A|ϕµ

λ(y, [0,∞)) ⊂ A}。由定理 3.27，对充分小 ε、
充分大 F，λ � 0, µ � 0，最好证明以下：

(1) y ∈ K1 ∩ A+ 的话 ϕµ
λ(y, [0,∞)) ∩ ∂A = ∅.

(2) K2 ∩ A+ = ∅.

证明. TBA □

指数对 (N,L) 的取法并非唯一。令 (N ′, L′) 是满足命题 7.22 的条件的另一个
指数对。命题 3.5 的等变版本同样成立，有 S1 同伦等价

FT : N/L → N ′/L′.

除去这个 S1 同伦等价，映射 fF,λ,µ,N,L 的不依赖于取法，也即有以下成立。

命题 7.24. 令 f = fF,λ,µ,N,L, f
′ = fF,λ,µ,N ′,L′。下面的图表是 S1 同伦交换的：

TBA

这里省略证明。证明见 Khandhawit 的论文 [?] 的 appendix。
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令 F0, F1, F0 ⊂ F1 为 iΩ1(X)⊕Γ(S−)的充分大的有限维子空间，l � 0, µ � 0。
令 E0 = (D ⊕ pµr)−1(F0 ⊕ V µ

λ ), E1 = (D ⊕ pµr)−1(F1 ⊕ V µ
λ )。我们写

K ′
1 =


y ∈ B(V µ

λ , R)

∣∣∣∣∣∣∣∣∣∣∣∣

∃x ∈ B(E1, R
′)

pµr(x) = y,

∃s ∈ [0, 1],

‖D(x) + ((1− s)pF1 + spF0)C(x)‖L2
k−1(X) ≤ ε


,

K ′
2 =


y ∈ B(V µ

λ , R)

∣∣∣∣∣∣∣∣∣∣∣∣

∃x ∈ S(E1, R
′)

pµr(x) = y,

∃s ∈ [0, 1],

‖D(x) + ((1− s)pF1 + spF0)C(x)‖L2
k−1(X) ≤ ε


.

与命题 7.22 的证明同理，S1 等变指数对 (N,L) 最好要满足

K ′
1 ⊂ N, J ′

2 ⊂ L.

命题 7.25. 令 F0, F1 为 iΩ+(X)⊕Γ(S−)的充分大的有限维子空间，令 F0 ⊂ F1，
且令之满足 (7.11)。令 f0 = fF0,λ,µ,N,L, f1 = fF1,λ,µ,N,L。此时，存在自然的 S1 同伦

f0 ∧ (D|E1−E0) ∼ f1.

这里，E1 − E0 := E1 ∩ (E0)
⊥.

证明. TBA □

取 F0 为充分大 L2
k−1(iΩ

+(X) ⊕ Γ(S−)) 的有限维子空间，λ � 0, µ � 0，使
得 F0 ⊕ V µ

λ 与 Im /̂DA0
⊕ pµr 都跟 L2

k−1(iΩ
+(X) ⊕ Γ(S−)) ⊕ L2

k− 1
2

(V µ) 横截相交。
F0 ⊂ F 时，L|E−E0 称为从 E − E0 到 F − F0 的同构。取平凡化

E0
∼= Rm ⊕ Cn,

F0
∼= Rm′ ⊕ Cn′

,

F − F0
∼= Rp ⊕ Cq.



18 7. SEIBERG-WITTEN FLOER 稳定同伦型

此时，平凡化
E − E0

∼= Rp ⊕ Cq

由 L|E−E0 与 F − F0 的平凡化合成得到。
用上面选择的 E,F 的平凡化后，根据命题 7.25，定义 fF,λ,µ,N,L 为范畴 C 中

的态射

(Rm ⊕ Cn+a)+ ∧ (Rd0λ,R ⊕ Cd0λ,C)+ → (Rm+b+(X) ⊕ Cm)+ ∧ (N/L).

这里，有 a = indC( /̂D ⊕ p0r) ∈ Z，并且有 d0λ,R 是 V 0
λ 的实成分 V 0

λ,R ⊂ iΩ1(Y ) 的维
数，d0λ,C 是 V 0

λ 的复成分 V 0
λ,C ⊂ Γ(S) 的维数。

两边取 Σ−Rm+d0λ,R⊕Cn+d0λ,C+n(Y,s,g)

，得到态射

ΦX(s) :

(
C

c1(s)
2−σ(X)
8

)+

→ ΣRb+(X)

SWF (Y, t).

注意 7.26. 虽然为了定义 ΦX(s) 而取 E,F 的平凡化而稍稍不自然，但是改变
范畴 C 的态射集合的定义的话，可以避免平凡化。只是在这种情况下，范畴 C 的
定义变得依赖于 s, g。在 7.6 节进行的应用，取平凡化考虑起来更简单，所以这里
取了平凡化来定义 ΦX(s)。

现在，令 (X, s) 是从 (Y0, t0) 到 (Y1, t1) 的 spinc 配边：

∂X = (−Y0)
∐

Y1, s|Y0 = t0, s|Y1 = t1.

有相对 Bauer-古田不变量

ΦX(s) :

(
C

c1(s)
2−σ(X)
8

)+

→ SWF (−Y0, t0) ∧ SWF (Y1, t1).

取与恒等态射 idSWF (Y0,t0) 的 Smash 积得到

idSWF (Y0,t0)∧ΦX(s) : Σ
C

c1(s)
2−σ(X)
8 SWF (Y0, t0) → SWF (Y0, t0)∧SWF (−Y0, t0)∧SWF (Y1, t1).

合成定理 7.18 的对偶映射 δ : SWF (Y0, t0) ∧ SWF (−Y0, t0) → S0，得到态射

ΨX(s) = ΨX(s, ĝ) : Σ
C

c1(s)
2−σ(X)
8 SWF (Y0, t0) → SWF (Y1, t1).

我们证明 ΨX(s)关于 X 的 Riemann度规 ĝ，只依赖于其向边界 Y 的限制（注
意我们还没有证明 SWF (Y, t, g) 关于 g 不变）。也就是说，ĝ 和 ĝ′ 都是 Riemann
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度规，如果 ĝ|Y = ĝ′|Y，就有 ΨX(s, ĝ) = ΨX(s, ĝ
′)。这是因为 X 的 Riemann 度规

路径 (1− s)ĝ + sĝ′(0 ≤ s ≤ 1)，可以在（保持边界 Y 的数据的）关于 ĝ 和 ĝ′ 的 X

上的 Seiberg-Witten映射的有限维近似之间诱导同伦。ΨX(s)不依赖于 ĝ|Y 一事请
见下节。

Y 的平坦联络 Â0 的取法（除去规范变换后）是唯一的，从而与 Riemann 度
规的讨论同理，ΨX(s) 不依赖于 Â0。

命题 7.27. ΨX(s) 只依赖于 s, ĝ|Y，不依赖于 Â0 的取法。（下节将证明也不依
赖除去同构后的 ĝ|Y。）

令 G = Pin(2)。(X, s) 为 spin 时，相对 Bauer-古田不变量可作为 G 等变稳定
同伦范畴 CG 的态射

ΨX(s) : Σ
−σ(X)

16 SWF (Y0, t0) → SWF (Y1, t1)

来定义。

4. 配边，场论，不变性

令 Cobn 为 n 维闭流形作为对象、Y0, Y1 间的配边 X 作为态射的范畴。通常我
们要将 Y,X 的几何结构附加考虑。令 C 为一般范畴。我们称从 Cobn 到 C 的函子
F : Cobn → C 为以 C 为值的场论。
令 C̃ob3 的对象为三元组 (Y, t, g)。Y 是有向闭三维流形，且满足 b1(Y ) = 0。t

是 spinc 结构，g 是 Y 的 Riemann 度规。从对象 (Y0, t0, g0) 到 (Y1, t1, g1) 的态射是
三元组 (X, s, ĝ)。这里，X 是 Y0 到 Y1 的配边，s 是 X 的 spinc 结构且 s|Yi

= ti，ĝ

是 X 的 Riemann 度规且 ĝ|Yi
= gi。

定理 7.28. 对应关系 (Y, t, g) 7→ SWF (Y, t, g), (X, s, ĝ) 7→ ΨX(s, ĝ) 决定了函子
C̃ob3 → C。也就是说以下成立：

(1) ΨY×[0,1](π
∗t, π∗g) : SWF (Y, t, g) → SWF (Y, t, g)等于恒等态射 idSWF (Y,t,g)。

这里 π : Y × [0, 1] → Y 是投影。
(2) 对于以下两个态射

(X0, s0, ĝ0) : (Y0, t0, g0) → (Y1, t1, g1),

(X1, s1, ĝ1) : (Y1, t1, g1) → (Y2, t2, g2),
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有

ΨX0∪Y1
X1(s0 ∪Y1 s1, ĝ0 ∪Y1 ĝ1) = ΨX1(s1, ĝ1) ◦ΨX0(s0, ĝ0).

这个定理的证明长得过分，本书无法进行。这个定理的 (1) 可以根据笹平—
Stoffregen[?] 说明。（2）可以根据 Manolescu[?] 说明。另外参见 Khandhawit—林
—笹平 [?] 的论文。

推论 7.29. 对于 Y 的 Riemann 度规 g0, g1，有同构

ΨY×[0,1](π
∗t, ĝ) : SWF (Y, t, g0) → SWF (Y, t, g1).

这里，ĝ 是 Y × [0, 1] 的 Riemann 度规且 ĝ|Y×{i} = gi。是故，SWF (Y, t, g) 除去典
范同构后，是不依赖于 g 的 (Y, t) 的不变量。

证明. TBA □

由命题 7.22、定理 7.28、推论 7.29 可得以下：

推论 7.30. ΨX(s, ĝ) 除去推论 7.29 给出的同构后，不依赖于 ĝ。

这里讲述的只是关于 Riemann 度规，但是同理对 λ, µ, (N,L) 同理有定理 7.14
成立。同理可以证明定理 7.16.

将 Seiberg-Witten Floer 稳定同伦型更紧凑地定义成不依赖于构造时使用的数
据的三维流形不变量，最好使用 Kroheimer-Mrowker[?] 的如下讨论。
首先，对一般范畴 C，范畴 C/CAN如下定义。C/CAN的对象是组 ({xα}α∈A, {fα1α2}α1,α2∈A)。

这里，{xα}α∈A 是集合 A 索引的 C 的对象族，fα1α2 : xα1 → xα2 是 C 中的态射，满
足

fαα = idxα , fα2α3 ◦ fα1α2 = fα1α3 .

从 ({xα}α∈A, {fα1α2}α1,α2∈A)到 ({yα}β∈B, {gβ1β2}β1,β2∈B)的态射是族 {mαβ}α∈A,β∈B。
这里 mαβ 是 C 中的态射 xα → xβ，满足如下的交换图：

(TBA)
从定理 7.28 得到以下：

定理 7.31. 令 Cob3 是对象为 (Y, t)，从 (Y0, t0) 到 (Y1, t1) 的态射为 (X, s) 的
范畴。其中 Y 是闭三维流形，b1(Y ) = 0，t 是 Y 的 spinc 结构，(X, s) 是从 (Y0, t0)

到 (Y1, t1) 的 spinc 配边。
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令 A(Y, t)是定义 (Y, t)的 Seiberg-Witten Floer同伦型时需要的数据 (g, λ, µ, (N,L))

的集合。对应关系

(Y, t) 7→ ({xα}α∈A, {fα1α2}α1,α2∈A),

xα = SWF (Y, s, α),

fα0α1 = ΨY×[0,1](π
∗s) : SWF (Y, s, α0) → SWF (Y, s, α1),

(X, s) 7→ {mαβ}α∈A(Y0,s0),β∈A(Y1,s1),

mαβ = ΨX(s) : Σ
C

c1(s)
2−σ(X)
8 SWF (Y0, t0, α) → SWF (Y1, t1, β)

定义了函子

SWF : Cob3 → C/CAN.

此时，C/CAN 的对象 SWF (Y, t) 是 (Y, t) 的不变量。

5. SWF 型空间与 Borsuk–Ulam 型定理

虽然展示了关于球面之间的 S1 等变映射的（不等式1）限制，但是关于被称为
SWF 型空间的更广类别的空间之间的 S1 等变映射，则推广了定理 2.6 的 Borsuk–
Ulam型定理。推广了的 Borsuk–Ulam型定理可以配合相对 Bauer-古田不变量，得
到带边界四维流形的交叉形式的应用。

定义 7.32. 令 Z 是带基点 S1 等变 CW 复形，l 是大于 0 的整数。说 Z 是 l

级 S1-Seiberg-Witten Floer 型（S1-SWF 型），是指 S1 不动点集 ZS1 与 Sl 同伦等
价，且 Z \ ZS1 上的 S1 作用是自由的。

对带基点 S1 等变 CW 复形 Z，令 H̃∗
S1(Z;R) 是 S1 等变约化上同调

H̃∗
S1(Z;R) := H̃∗(Z ∧S1 ES1

+;R).

这里，ES1(= C∞) 是 S1 的万有丛 ES1 → BS1 的全空间，ES1
+ 是 ES1 加上基点

∗ 的 ES1
∐
{∗}。H̃∗(Z;R) 是多项式环 R[U ](= H∗(S0;R)) 上的分次模。另一方面，

注意到形式幂级数环 R[[U ]] 是主理想整环，对任意理想 I，存在大于 0 的整数 h

使得 I = (Uh)。这里 (Uh) 是 Uh 生成的理想。

1译者注
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定义 7.33. 令 Z 是 l 级 S1 等变 SWF 型空间。此时，h(Z) ∈ Z 定义为以下。
包含映射 i : ZS1

↪→ Z 诱导 R[U ] 拟同构映射

H̃∗+l(Z;R) i∗−→ H̃∗+l(ZS1

;R)
∼= H̃∗+l(Sl;R) = H̃∗(S0;R) = R[u]

↪→ R[[U ]]

的像生成的 R[[U ]]的理想为 I(Z)。此时，存在大于 0的整数 h，可写为 I(Z) = (Uh)。
将 h(Z) 定义为这个整数 h。

作为定理 2.6 的推广有以下成立。

定理 7.34. 令 Z,Z ′ 为 l 级 SWF 型 S1 等变 CW 复形。并且令

f : Z → Z ′

为 S1 等变映射，到 S1 不动点到限制

fS1

: ZS1 → (Z ′)S
1

是同伦等价。此时成立有
h(Z) ≤ h(Z ′).

证明. TBA □

接下来很容易证明

引理 7.35. 有以下成立

h(ΣRZ) = h(Z), h(ΣCZ) = h(Z) + 1.

例 7.36. h((Rm ⊕ Cn)+) = n。

S1 映射
f : (Rm ⊕ Cn)+ → (Rm ⊕ Cn′

)+,

令 fS1
: (Rm)+ → (Rm)+ 是同伦等价。此时根据定理 7.34，有

n = h((Rm ⊕ Cn)+) ≤ h((Rm ⊕ Cn′
)+) = n′.

这就是定理 2.6 的不等式。
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令 G = Pin(2)。下面说明作为定理 2.8 推广的 G 等变 Borsuk–Ulam 型定理。
此后说明的 G 等变 Borsuk–Ulam 型定理都来自于 Manolescu[?]。

定义 7.37. 令 Z 是带基点 G-CW 复形，l 是大于 0 的整数。Z 是 l 级 G-
Seiberg-Witten Floer 型（G-SWF 型）是指，S1 不动点集 ZS1 同伦等价于 (R̃l)+，
且 Z \ ZS1 上 G 的作用是自由的。这里 R̃ 是 G 的非平凡实一维表示。

令 Z 是 l 级 G-SWF 型。令 l 是偶数。令 R(G) 的理想 I(Z) 为限制映射与
Bott 周期律同构的合成

K̃G(Z) ∼=
i∗
S1−−→ K̃G(Z

S1

) ∼= K̃G((R̃l)+)

∼= K̃G(C̃
1
2
l) ∼= K̃G(pt) = R(G)

的像。有
I(Z) = {yx ∈ R(G)|x ∈ K̃G(Z)}.

这里，对 x ∈ K̃G(Z)，用 i∗S1x = yxbC̃
l
2
定义 yx ∈ R(G)。这里，b

C̃
l
2
是 Bott 类。

引理 7.38. 令 Z 是 G-SWF 型空间。令 l 是偶数。此时，存在某个 m ∈ Z≥0，
使得 wm, zm ∈ I(Z)。这里，w, z ∈ R(G) 如命题 2.7 定义。

证明见 Manolescu 的论文 [?] 的第三节。
j 作用的迹定为环同态

Trj : R(G) → Z

且有 Trj(w) = Trj(z) = 2. 因为 Z 是主理想整环，根据引理 7.38，存在某个 k ∈ Z≥0

可以写
Trj(I(Z)) = (2k).

(2k) 是 2k 生成的 Z 的理想。

定义 7.39. 令 Z 为 l 级 SWF 型 G 空间。令 l 为大于 0 偶数。令 k(Z) ∈ Z≥0

为满足 (7.15) 的整数 k。

定义 7.40. 令 Z 为 l级 SWF型 G空间。令 l为大于 0偶数。存在某个 k ∈ Z≥0

使得
I(Z) = (zk)

时，Z 称为 KG 分离型。
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下面是对 G-SWF 型空间的 Borsuk–Ulam 型定理。

定理 7.41. 令 Z0, Z1 分别是 l0, l1 级的 G-SWF 型空间。l0, l1 都是大于 0 的偶
数。还令

f : Z0 → Z1

是 G 映射。对 l0 < l1，令
fG : ZG

0 → ZG
1

是同伦等价。此时成立

k(Z0) +
1

2
l0 ≤ k(Z1) +

1

2
l1.

另外若 Z0 是 KG 分离型，则成立

k(Z0) +
1

2
l0 + 1 ≤ k(Z1) +

1

2
l1.

证明. TBA □

引理 7.42. 令 Z 是 l 级 G-SWF 型空间。令 l 是大于 0 偶数。此时有

I(ΣR̃2

Z) = I(Z), I(ΣHZ) = zI(Z).

特别地，满足
k(ΣR̃2

Z) = k(Z), k(ΣHZ) = k(Z) + 1.

证明. TBA □

例 7.43. 令 l 是大于 0 偶数。有

I((R̃l ⊕Hn)+) = (zn), k((R̃l ⊕Hn)+) = n.

(R̃l ⊕Hn)+ 是 KG 分离型的。

6. 带边界四维流形的相交形式

使用相对 Bauer-古田不变量，我们展示对光滑带边界四维流形的相交形式施
予的限制。这将是定理 4.3 和定理 4.9 的推广。
令 Y 是有向闭三维流形且满足 b1(Y ) = 0，t 是 Y 的 spinc 结构，g 是 Y 的

Riemann 度规。令 (N,L) 是在定理 7.9 中得到的 Inv(B(V µ
λ , R);ϕµ

λ) 的 S1 等变
Conley 对。这里 λ � 0 � µ。
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引理 7.44. N/L 是定理 7.32 意义上的 dimV 0
λ,R 级 SWF 型空间。这里 V 0

λ,R =

(V 0
λ )

S1
= V 0

λ ∩ iΩ1(Y )。

证明. TBA □

定义 7.45. 令 n(Y, t, g) ∈ Q 是 (7.6) 定义的数。我们定义

h(Y, t) = h(N/L)− dimC V
0
0,C − n(Y, t, g) ∈ Q.

这里 V 0
λ,C = V 0

λ ∩ Γ(S)。

命题 7.46. 定义 7.45 中定义的 h(Y, t) 不依赖于 λ, µ, g，是 (Y, t) 的不变量。

证明. TBA □

h(Y, t) 早先被 Froyshøv[?] 利用 Seiberg-Witten Floer 同调定义过了。我们将
h(Y, t) 称为 Froshøv 不变量。
利用 h(Y, t)，可以推广 Donaldson 定理（定理 4.3）。令 X 是有向光滑紧致四

维流形，且 ∂X = Y。此时与闭流形时同理有相交形式

QX : H2(X;Z)/Tor⊗H2(X;Z)/Tor → Z.

这里，QX 不一定是幺模的。QX 是幺模的等价于 H1(Y ;Z) = 0。

定理 7.47 (Froyshøv). 令 Y0, Y1 为有向三维闭流形，且 b1 = 0。令 t0, t1 是
Y0, Y1 的 spinc 结构。令 (X, s) 是从 (Y0, t0) 到 (Y1, t1) 的光滑 spinc 配边。此时成
立

c1(s)
2 + b2(X)

8
+ h(Y0, t0) ≤ h(Y1, t1).

证明. TBA □

X 是 Y 作为边界的四维流形之时，从 X 中去除一个小的四维圆盘后，我们得
到从 S3 到 Y 的配边。因为 h(S3, tS3) = 0，我们得到以下：

推论 7.48. 令 (X, s) 为紧致光滑 spinc 四维流形，且 (Y, t) 为边界。假定 QX

负定，且 b1(Y ) = 0。此时成立

c1(s)
2 + b2(X)

8
≤ h(Y, s).
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这个不等式将给出光滑四维流形 X 的相交形式的限制。令 H1(Y,Z) = 0。此
时根据 Poincaré 对偶和万有系数定理有 H2(Y ;Z) = 0。从而，Y 的 spinc 结构（除
去同构）只有一个。令 h(Y, t) = 0。因为 QX 为幺模，根据定理 5.38，QX 可对角
化。如令 Y = S3，这就成为 Donaldson 定理（定理 4.3）。

令 G = Pin(2)。

定义 7.49. 令 (Y, t) 为 spin 闭三维流形且 b1(Y ) = 0。此时定义

κ(Y, t) = 2(k(N/L)− dimH V 0
λ,H)− n(Y, g, s) ∈ 1

8
Z.

这里 λ � 0, µ � 0, (N,L) 是等变指数对，且有 V 0
λ,H =0

λ ∩Γ(S)。

命题 7.50. κ(Y, t) 的值不依赖于 λ, µ, g 的取法，是 (Y, s) 的不变量。

证明. 依定理 7.16 和引理 7.42. □

κ(Y, t) 是根据 Manolescu[?] 定义的不变量。

定理 7.51 (Manolescu). 令 (X, s) 为从 (Y0, t0) 到 (Y1, t1) 的光滑 spin 配边，且
b+(X) > 0。此时成立

−σ(X)

8
+ κ(Y0, t0)− 1 ≤ b+(X) + κ(Y1, t1).

另外，当 (Y0, t0) 是 KG 分离型的话，成立

−σ(X)

8
+ κ(Y0, t0) + 1 ≤ b+(X) + σ(Y1, t1).

证明. TBA □

推论 7.52. 令 X 是有向、光滑、紧致四维流形，边界为 Y。令 s 是 X 的 spinc

结构。令 t := s|Y。若有 b+(X) > 0，则

−σ(X)

8
+ 1 ≤ b+(X) + κ(Y, t).

证明. 令从 X 中去除四维小圆盘后得到的四维流形为 X ′。此时 X ′ 是从 S3 到
Y 的配边。(S3, tS3) 是 KG 分离型，且有 κ(S3, tS3) = 0。对 X ′ 使用定理 7.51，就
可得这个主张。 □

这里，若令 Y = S3，就得到了定理 4.9（并请参照 5.8 节）。
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7. 计算及其他应用

Seiberg-Witten Floer稳定同伦型 SWF (Y, t)和不变量 κ(Y, t)的计算并不容易。
根据 Manolescu[?]，人们已经计算出来一系列 Seifert纤维空间的 SWF (Y, t)，此后，
计算方面几乎没有进展。但是最近，Dai—笹平—Stoffregen[?]对满足 H1(Y ;Q) = 0

的全部 Seifert 纤维空间在内的一大类三维流形，具体计算了 SWF (Y, t)。此外还
计算了 κ(Y, t) 的值，并做了比较。依据到此的工作，我们得到了更多计算例子。今
后，可以期待利用这个计算的应用。关于 SWF (Y, t) 和 κ(Y, t) 的计算，参照这篇
论文 [?]。

作为 Seiberg-Witten Floer 稳定同伦型 SWF (Y, t) 的应用，本书讲述了关于有
边界四维流形的相交形式的事情。固定三维流形 Y，将 Y 作为边界的四维流形的
相交形式有可能是怎样的二次型，这样的问题我们还不甚了解。关于这个的研究不
是使用 Seiberg-Witten 理论，而是 Donaldson 理论。比如参照 Scaduto[?] 的论文。
作为相交形式以外的应用，根据 Manolescu[?] 可以用来解决关于拓扑流形的

三角剖分的未解难题。这个论文里使用了 SWF (Y, t) 的 Z2 系数 Pin(2) 等变同调
H

Pin(2)
∗ (SWF (Y, t);Z)，导入了 Froshøv 型不变量 α(Y, t), β(Y, t), γ(Y, t)。利用这些
不变量的性质，得以解决了 Rholin不变量相关的问题。与松本尭生 [?]和 Galewski-
Stern[?]的结果相结合，可以证明五维以上各维度存在不允许三角剖分的拓扑流形。
另外，根据林 [?] 的证明，不使用 Floer 同伦型，只用 Floer 同调就可以做同理
解决。作为别的应用，今野—谷口 [?] 应用到有边界四维流形的微分同胚群。使用
Seiberg-Witten Floer 同伦型 SWF (Y, t)，他们发现了例子可证明 Y 作为边界的四
维流形 X 的微分同胚群 Diff(X) 与同胚群 Homeo(X) 并非弱同伦等价。甚者，今
野—宮澤—谷口 [?] 将 κ(Y, t) 应用到纽结。根据 Seiberg-Witten Floer 稳定同伦型
的计算，可以期待这些应用可以运用到更多流形和纽结。


